0
Ваш список отложенного товара пуст
В списке отложенного товара 0 на сумму 0 руб. Перейти в список отложенного товара
0
Ваша корзина пуста
Товаров в корзине 0 на сумму 0 руб. Перейти в корзину Оформить заказ

Е.Е.Бушев, О.Л.Николайчук, В.М.Стучебников

(ПГ МИДА, 2000 год)

В последние годы ускоренное развитие получили микроэлектронные датчики различных физических величин, что связано, в первую очередь, с непрерывно растущими потребностями промышленности в точных измерениях. Микроэлектронная технология, совершившая переворот в развитии средств обработки информации, позволяет обеспечить массовое производство и средств получения информации - датчиков.

Большими достоинствами с точки зрения стабильности и точности при работе в жестких условиях эксплуатации (высокие и низкие температуры, ионизирующие излучения и др.) обладают тензорезисторные чувствительные элементы на основе структур «кремний на сапфире» (КНС). На базе этих чувствительных элементов разработаны и выпускаются ряд датчиков (прежде всего давления) в России и за рубежом.

В настоящей работе приведены характеристики ряда преобразователей давления и датчиков давления на основе структур КНС, разработанных и выпускаемых промышленной группой «Микроэлектронные датчики» (МИДА). Оптимизация характеристик исходного материала, конструкции упругого элемента, топологии тензочувствительной схемы, параметров электронного преобразователя, технологии изготовления и методов коррекции температурных погрешностей позволяют получать датчики давления с высокими метрологическими характеристиками при относительно низких затратах на их производство. Датчики МИДА более десяти лет успешно работают в различных отраслях энергетики, промышленности, коммунального хозяйства, в том числе в системах автоматизации и управления газотранспортными магистралями и атомными электростанциями. Часть приборов МИДА специально разработана для экспорта (в США, Чехию, Китай).

Примечание: В статье приводятся данные по ряду преобразователей и датчиков давления (в частности, серии МИДА-01П), которые в 2003 году были сняты с производства и заменены более совершенными датчиками серии МИДА-13П. В тексте есть ссылки на современные аналоги упомянутых датчиков, перейдя по которым вы можете ознакомиться с их подробными характеристиками, подобрать необходимую комплектацию.

Конструкция преобразователей и датчиков давления МИДА

Тензорезисторные преобразователи давления (ТП) МИДА выполнены в виде одномембранных или двухмембранных устройств, в которых на круглую металлическую (титановый сплав) мембрану, выполненную заодно с корпусом, напаян твердым припоем чувствительный элемент в виде сапфировой пластины с нанесенной на ней гетероэпитаксиальной тензочувствительной мостовой схемой. Измеряемое давление подается либо непосредственно на измерительную мембрану с чувствительным элементом (рис.1а), либо на воспринимающую мембрану, соединенную с измерительной мембраной жестким штоком (рис.1б). В датчике абсолютного давления МИДА-ДА-04П сапфировая пластина, соединенная с керамическим основанием стеклоприпоем, играет роль упругого элемента, преобразующего давление в деформацию тензорезисторов (рис.1в).

datchik mida

Рис. 1. Основные конструктивные схемы тензопреобразователей давления: одномембранный (а) и двухмембранный (б) двухслойные ТП избыточного давления и однослойный ТП абсолютного давления (в).  1 – полупроводниковый чувствительный элемент на основе КНС; 2 – металлическая измерительная мембрана; 3 – коллектор; 4 – металлическая воспринимающая мембрана; 5 – шток; 6 – керамическое основание.

Конструкция с двухслойной измерительной мембраной (рис.1а,б) выгодно отличается от датчиков, в которых сапфировый чувствительный элемент одновременно является воспринимающей давление мембраной. Во-первых, в датчиках на различные диапазоны давлений используется один типоразмер чувствительного элемента, что значительно упрощает производство. Во-вторых, металлическая мембрана позволяет выдерживать значительные (до 10 раз) перегрузки без разрушения датчика, что особенно важно при измерениях во взрывоопасных условиях.

Двухмембранная конструкция (рис.1б) значительно расширяет возможности преобразователей давления. В этой конструкции достаточно просто реализуются датчики с открытой мембраной, позволяющие проводить измерения без подмембранной полости МИДА-ДИ-07П (МИДА-ДИ-12П-072-Ех-К-200, МИДА-ДИ-12П-072-К-200, МИДА-ДИ-12П-072-К-150, МИДА-ДИ-12П-072-Ех-К-150), МИДА-ДИ-08П (МИДА-ДИ-12П-081-К, МИДА-ДИ-12П-081-Ех-К, МИДА-ДИ-12П-082-К, МИДА-ДИ-12П-082-Ех-К), МИДА-ДИ-13П-ОМ20. Такие датчики необходимы для измерения давления сред, засоряющих импульсные трубки и подмембранные полости (например, вязких или кристаллизующихся жидкостей, газовых взвесей твердых частиц), а также для измерения давления в пищевой промышленности. Двухмембранная конструкция позволяет также реализовать ТП давления высокотемпературных (до 600 °С) сред, например, для измерения давления газов в цилиндрах двигателей - МИДА-ДИ-55П (МИДА-ПИ-55). Наконец, такая конструкция позволяет создавать высоконадежные датчики абсолютного давления.

Электронная схема датчика обеспечивает питание тензочувствительной мостовой схемы ТП и преобразование сигнала разбаланса тензомоста в унифицированный выходной сигнал датчика (0-5, 4-20 мА или 0-5 В). Особенность датчиков МИДА заключается в отсутствии элементов коррекции погрешностей ТП в электронной схеме; коррекция погрешностей (в первую очередь, температурных) осуществляется непосредственно в преобразователях. Единственным исключением является высокоточные датчики МИДА-ДИ-13П-К и МИДА-ДА-13П-К, в котором коррекция всех погрешностей производится встроенным микропроцессором. Конструктивно электронная схема, выполненная печатным монтажом, либо объединена в одном корпусе с ТП (для датчиков на диапазон рабочих температур –40…+80 °С), либо вынесена в отдельный корпус (для высокотемпературных датчиков давления).

Оптимизация характеристик тензопреобразователей

Основными требованиями, предъявляемыми к современным общепромышленным датчикам, являются: высокая стабильность характеристик во времени, высокая надежность, работоспособность в жестких условиях эксплуатации, высокая точность (малые основная  и дополнительная - в основном, температурная - погрешности), минимальная трудоемкость производства. Поскольку эти требования, вообще говоря, противоречивы, при разработке датчиков приходится идти на компромисс, выбирая оптимальное сочетание параметров. Это оптимальное сочетание обеспечивается разработанной конструкцией, используемой технологией и электронной схемой датчика. В датчиках давления МИДА использованы как различные методы физико-конструктивной и физико-технологической оптимизации ТП, использующие  особенности структур КНС, так и схемотехнические методы.

Стабильность характеристик. Стабильность характеристик ТП достигается комплексом конструктивно-технологических решений [9]. В качестве материала металлической упругой мембраны преобразователя используются дисперсионно-твердеющие титановые сплавы, имеющие высокие упругие характеристики в различных областях рабочих температур (до 600 °С в зависимости от состава). Соединение сапфировой подложки тензочувствительного элемента с мембраной осуществляется высокотемпературной (~850 °С) пайкой серебросодержащим припоем, что обеспечивает практически безгистерезисную передачу деформации от воспринимающей давление металлической мембраны через монокристаллическую сапфировую подложку к кремниевым тензорезисторам. В датчиках МИДА используется топологически замкнутая мостовая тензосхема. Это позволяет значительно уменьшить влияние переходного сопротивления контактов на выходной сигнал тензопреобразователя при питании моста постоянным напряжением и полностью исключить это влияние при питании моста постоянным током, что также повышает стабильность характеристик тензопреобразователя. Гетероэпитаксиальные кремниевые тензорезисторы на диэлектрической подложке не имеют необходимого для диффузионных чувствительных элементов изолирующего p-n-перехода и дополнительно защищены слоем двуокиси кремния, что обеспечивает высокую стабильность сопротивления. Для дополнительной защиты от влияния окружающей среды на тензосхему корпус датчиков делается герметичным, а связь с атмосферой в датчиках избыточного давления осуществляется через пористый металлический фильтр. В результате даже после многочисленных термоциклов изменение основной погрешности датчиков не превышает 0,2-0,5% (рис.2).

datchik mida2

Основная погрешность преобразования. Линейность выходной характеристики ТП определяется как механическим преобразованием (давления в деформацию тензорезисторов), так и механо-электрическим преобразованием (деформации в изменение сопротивления тензорезисторов). Специфические особенности гетероэпитаксиальных кремниевых тензорезисторов на сапфире позволяют обеспечить высокую линейность механо-электрического преобразования, что вместе с оптимальной формой упругой мембраны, воспринимающей давление, определяет малую погрешность нелинейности ТП давления (рис.3а). Как уже упоминалось, дисперсионная структура титанового сплава и высокотемпературное паяное соединение сапфира с металлом  обеспечивает практическое отсутствие вариации ТП (рис.3б). Высокая повторяемость характеристик достигается технологической приработкой ТП. Поскольку электронная схема обработки сигнала имеет высокую линейность, то нелинейность выходного сигнала датчиков практически совпадает с нелинейностью ТП.

datchik mida3

datchik mida4

Рис. 3. Нелинейность (а) и вариация (б) ТП давления МИДА-ДИ-61П (20 МПа, данные по 470 шт.) и МИДА-ДИ-01П (1 МПа, 630 шт.). На рисунках указаны средние значения нелинейности и вариации.

Температурная погрешность преобразования. В датчиках давления МИДА используется физико-технологическая и пассивная схемотехническая коррекция температурной погрешности ТП. При этом, как уже упоминалось, электронная схема обработки сигнала ТП не участвует в компенсации температурной погрешности, что уменьшает трудоемкость настройки датчика в целом.

К сожалению, значительная разница в коэффициентах теплового расширения сапфира и титана приводит к деформации чувствительного элемента при остывании после пайки и, как следствие, к температурной зависимости начального выходного сигнала тензопреобразователя. Для коррекции этой температурной зависимости в датчиках МИДА используются два различных метода. При питании тензомоста от источника тока с помощью элементов балансировки моста, включенных в топологию тензосхемы, устанавливается определенное расчетное значение начального выходного сигнала, которое уже практически не зависит от температуры. Включение элементов балансировки тензомоста непосредственно в его топологическую схему, во-первых, возможно лишь благодаря твердой диэлектрической подложке в структуре КНС и легко осуществляется перерезанием кремниевых перемычек. Во-вторых, при этом не меняются температурные коэффициенты сопротивления тензорезисторов, что позволяет более точно корректировать температурный дрейф начального сигнала ТП по сравнению с обычно используемой балансировкой диффузионных кремниевых тензосхем с помощью постоянных резисторов. При питании тензомоста от источника напряжения параллельно с одним плечом включается постоянный резистор, а с помощью элементов балансировки тензомоста начальный сигнал устанавливается близким к нулю. Типичные значения зоны температурной погрешности начального сигнала датчиков показаны на рис. 4а.

Температурная зависимость чувствительности тензопреобразователей определяется, в основном, характеристиками кремниевого слоя. Как показано в, в гетероэпитаксиальных тензорезисторах из КНС имеет место явление дифференциальной инвариантности пьезосопротивления (ДТИП), что позволяет при определенной оптимальной степени легирования кремния и питании тензосхемы постоянным током обеспечить постоянство чувствительности тензопреобразователя давления в широком диапазоне температур. Однако, в реальном производстве, во-первых, практически невозможно изготовление структур КНС с точно заданным уровнем легирования (для использования явления ДТИП необходимо отклонение от оптимального уровня легирования не более 1-2%), а, во-вторых, сам оптимальный уровень легирования зависит от конструкции тензопреобразователя, которая определяется диапазоном измерения. Поэтому используются структуры КНС с практически достижимым разбросом степени легирования (~5-7%) с уровнем легирования несколько выше оптимального, а возникающая при этом небольшая температурная зависимость чувствительности компенсируется подключением параллельно питающей диагонали моста постоянного резистора.

При питании тензомоста от источника напряжения используются структуры КНС с более высокой степенью легирования, обеспечивающие меньшую температурную зависимость чувствительности тензопреобразователя. Дополнительная компенсация температурной погрешности чувствительности ТП обеспечивается включением постоянного резистора последовательно с тензомостом.

Типичные значения зоны температурной погрешности чувствительности для общепромышленных датчиков показаны на рис. 4б.

datchik mida5

datchik mida6

Рис. 4. Зона температурной погрешности начального выходного сигнала (а) и диапазона изменения выходного сигнала (б)  датчиков МИДА-ДИ-01П (1 МПа, 450 шт.) в диапазоне температур –40…+80 °С.

Работоспособность в жестких условиях эксплуатации. Использование металлической мембраны и тензочувствительных элементов на основе структур КНС позволяет создавать датчики давления для работы в широком диапазоне жестких условий эксплуатации. Ранее были разработаны ТП давления криогенных сред, работающие с высокой точностью до температур ~ 2 К, а также показана работоспособность высокотемпературных ТП давления вплоть до 320 °С. Если для высокоточных преобразователей давления криогенных сред достаточно оптимизации уровня легирования слоя кремния тензочувствительного элемента, то создание высокотемпературных датчиков давления требует комплекса физико-конструктивных и технологических решений. Отсутствие p-n-перехода в тензосхеме и высокие упругие и диэлектрические свойства сапфира ограничивают рабочую температуру тензочувствительных элементов величиной ~ 600 °С, при которой начинается заметная пластическая деформация кремния. Однако, на практике создание датчика давления, работающего при такой температуре с хорошей точностью, связано с преодолением ряда трудностей.  Кроме выбора оптимальной степени легирования кремния, необходимо использовать титановый сплав, имеющий высокие упругие характеристики при высоких температурах. В настоящее время такие сплавы уверенно работают до температур порядка 500 °С. Большой проблемой являются омические контакты к кремнию, стойкие при высокой температуре. В высокотемпературных датчиках МИДА используются алюминиевые фольговые контакты, прикрепляемые непосредственно к кремниевым контактным площадкам ультразвуковой сваркой без использования переходного слоя. Такие контакты показали хорошую стабильность и высокую механическую прочность до температур ~ 400 °С. В качестве материала коллектора в высокотемпературных датчиках МИДА используется специальная пластмасса, устойчивая до ~ 500 °С, и никелевые выводы, а в качестве проводников - никелевый провод в стеклоизоляции. Хорошие возможности для создания датчиков давления высокотемпературных сред представляет двухмембранная конструкция: в этом случае температура воспринимающей давление мембраны может быть значительно выше температуры мембраны, на которой закреплен чувствительный элемент. В результате разработаны ТП давления для судовых дизелей (МИДА-ПИ-55) с температурой измеряемых газов свыше 500 °С, тогда как температура чувствительного элемента ТП не превышает 300 С. 

Технические характеристики преобразователей давления

Промышленная группа МИДА выпускает тензорезисторные преобразователи избыточного (ДИ) и абсолютного (ДА) давления для общепромышленных и специальных применений.

Диапазоны измеряемых давлений ТП составляют от 0-0,04 МПа до 0-160 МПа (ДИ) и от 0-0,04 МПа до 0-4 МПа (ДА). Для зарубежных поставок (МИДА-ДИ(ДА)-61/62П) диапазоны измерения нормируются в psi (1 psi = 6,8948 кПа). Все ТП имеют нормированный выходной сигнал: при питании тензомоста постоянным напряжением (до 15 В) начальный выходной сигнал составляет +0,1 мВ/В питания, а диапазон изменения выходного сигнала  (7+0,1) мВ/В и (10+0,1) мВ/В (в зависимости от диапазона измерения). Точность преобразования определяется как корень квадратный из суммы квадратов нелинейности, вариации и повторяемости в нормальных условиях; для высокотемпературных ТП нормальными условиями является температура, соответствующая середине диапазона температурной компенсации.

Рабочий диапазон температур ТП составляет от -65 до +150 °С (МИДА-ДИ(ДА)-51/61П) или от +10 до +350 °С (МИДА-ДИ-52/62П). Температурная компенсация погрешностей осуществлена либо в диапазоне температур от -40 до +80 °С (МИДА-ДИ(ДА)-51/61П), либо в любом стоградусном интервале из рабочего диапазона температур для МИДА-ДИ-52/62П. При этом нормируется максимальная зона изменения выходного сигнала в компенсированном диапазоне температур. По специальному заказу температурная компенсация ТП может быть осуществлена и в другом интервале температур (например, 0…+120 °С). Нормирование характеристик высокотемпературных ТП не при комнатной температуре, а при фактическом значении температуры измеряемой среды, и температурная компенсация выходного сигнала ТП вокруг этой температуры повышает точность измерения давления высокотемпературных сред.

Штуцеры ТП имеют метрическую резьбу М20х1,5 или М12х1,5 для применения в России, странах СНГ, Чехии и Китае (МИДА-ДИ(ДА)-51/52П) или коническую (1/4-18 NPT), дюймовую (7/16-20 UNJ), а также другие типы резьбы для поставок в США (МИДА-ДИ(ДА)-61/62П). Электрическое соединение осуществляется через кабельный ввод, разъем или колодку с сальниковым уплотнением. В высокотемпературных ТП для измерения давления жидких и газообразных сред с температурой свыше 150 °С электрический вывод выполнен высокотемпературным проводом через трубку из нержавеющей стали длиной 150 мм. ТП для измерения давления газов в цилиндрах двигателей (МИДА-ДИ-55П) выполнен в виде модуля, который можно вставлять в датчики, используемые в системах контроля двигателей.

Кроме преобразователей давления общепромышленного назначения МИДА-ДИ(ДА)-51/61П разработан и выпускается преобразователь абсолютного давления (МИДА-ДА-53П) для систем управления двигателем автомобиля, в котором тензочувствительный элемент из КНС вакуумноплотно припаян к керамическому корпусу и служит одновременно воспринимающей давление мембраной. Измеряемое давление подается в ТП со стороны тензочувствительной схемы, что позволяет получать ТП с малой нелинейностью преобразования при достаточно высокой чувствительности. ТП имеет пластмассовый корпус и торцевые выводы, позволяющие монтировать его на печатной плате.

Более подробные характеристики ТП давления приведены в ТАБЛ. 1 и на рис. 3,4.

Технические характеристики датчиков давления

Промышленной группой МИДА разработаны ряд общепромышленных и специальных датчиков давления. Общепромышленные датчики МИДА-ДИ-01П, МИДА-ДИ-13П и МИДА-ДА-13П имеют диапазоны измерения от 0-0,04 до 0-160 МПа и выпускаются с основной погрешностью 0,25 и 0,5%. Они работают в рабочем диапазоне температур от –40 до +80 °С; зона дополнительной температурной погрешности составляет не более 3% для датчиков с основной погрешностью 0,25% и 4% для датчиков с основной погрешностью 0,5%. Датчики МИДА-ДИ-13П-К и МИДА-ДА-13П-К с микропроцессорной обработкой выходного сигнала ТП имеет суммарную погрешность измерения в рабочем диапазоне температур 0,25 или 0,5%. Выходной сигнал датчиков 0-5 или 4-20 мА или 0-5 В. Датчики выпускаются также во взрывобезопасном варианте (исполнения типа «искробезопасная цепь» или «взрывонепроницаемая оболочка»). Разработан датчик для судов, характеристики которого согласованы с Морским регистром РФ. Датчики МИДА-ДИ-01П и МИДА-ДИ(ДА)-13П разрешены для применения в атомной энергетике.

Датчики МИДА-ДИ-12П (МИДА-ДИ-12П-12) имеют те же пределы измерения, но предназначены для  измерения избыточного давления газообразных или жидких сред с высокой (до 350 °С) температурой. Поэтому первичный преобразователь и электронный блок таких датчиков выполнены отдельно и соединяются либо высокотемпературным кабелем (при температуре измеряемой среды до 150 °С), либо высокотемпературным проводом в трубке из нержавеющей стали (при температуре до 350 °С). Датчики имеют основную погрешность (определяемую при заданной рабочей температуре) 0,5% и зону дополнительной температурной погрешности 4% в диапазоне температур 100 °С вокруг рабочей температуры.

Для измерения давления расплавов и других вязких сред с температурой до 300 °С разработаны и выпускаются датчики МИДА-ДИ-06П (МИДА-ДИ-12П-06-К) и МИДА-ДИ-07П (МИДА-ДИ-12П-081-К) с открытой приемной мембраной. Датчики МИДА-ДИ-07П по установочным размерам эквивалентны обычно используемым зарубежным датчикам расплавов полимеров, но в отличие от последних не содержат ртути, передающей давление из горячей зоны в холодную. По метрологическим характеристикам эти датчики аналогичны высокотемпературным датчикам МИДА-ДИ-12П.

Датчики МИДА-ДИ-08П (МИДА-ДИ-12П-05-К-200, МИДА-ДИ-12П-05-К-150) с открытой мембраной разработаны для измерения давления газов и жидкостей, содержащих твердые взвеси, которые забивают входные отверстия отводных трубок с обычными датчиками. Диапазон измеряемых избыточных давлений составляет от 0-4кПа до 0-1 МПа, рабочий диапазон температур измеряемой среды –40…+200 °С. Основная погрешность 0,5 и 1,0%, зона дополнительной температурной погрешности от 4 до 6 % в 100-градусном интервале.

Датчики МИДА-ДА-04П разработаны для систем контроля работы двигателя в автомобиле на базе ТП МИДА-ДА-53П. По своим параметрам они являются аналогами соответствующих датчиков фирм Bosch и General Motors.

Более подробные данные о характеристиках датчиков приведены в ТАБЛ.2.

Таким образом, использование структур КНС и двухслойной и двухмембранной конструкций преобразователя давления позволило создать ряд датчиков давления МИДА общепромышленного и специального назначения, обеспечивающих текущие и перспективные потребности различных отраслей промышленности, транспорта, энергетики и коммунального хозяйства. Успешный экспорт преобразователей давления и датчиков давления МИДА в развитые страны доказывает их высокую конкурентоспособность на мировом рынке.

informationДля обеспечения более удобного и частного просмотра этот веб-сайт использует файлы cookie. В некоторых случаях файлы cookie необходимы для обеспечения корректной работы сайта.
Доверяя нам свои персональные данные в контактных формах или при оформлении заказа, вы соглашаетесь на ее обработку и подтверждаете, что ознакомлены с Политикой конфиденциальности.
×